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Euclid's Algorithm in the Cyclotomic Field Q(< 16) 

By T. Ojala 

Abstract. Let t16 denote a primitive 16th root of unity. It is proved that Z16] 
is Euclidean for the norm map. 

1. Introduction. Let K be an algebraic number field of degree n over Q and 

RK the ring of integers of K. Let N: K > Q be the norm function N(x) = H-u(x), 
the product ranging over all n embeddings of K into the complex field. We call RK 

Euclidean for the norm if for every a, b E RK, b # 0, there are q, r E RK such that 

a = qb + r and IN(r)l < IN(b)I. In view of the multiplicativity of the norm we may 
write this as 

(1) (Vx E K)(3y E RK)(IN(x - y)I < 1). 

For a positive integer m, let Am denote a primitive mth root of unity. By 0 we 

mean the Euler ?-function. It is known that if ?b(m) - 10, m # 16, then Z[?m] is 
Euclidean for the norm map. For more details see, e.g. Lenstra [1] and Masley [2]. 
The case m = 24 has recently been proved by H. W. Lenstra, Jr. (written communi- 

cation). 

We shall now prove that Z[R16] is Euclidean, too. 

2. Preliminaries. Let xi and x2 be elements in an algebraic number field K. 

We shall say that xi and x2 are equivalent if there is a unit T? E K, an integer z E K 

and an automorphism a of K such that 

Xi = r7u(X2) + Z- 

This definition really gives rise to an equivalence relation. 

In order to verify condition (1), it is enough to consider one representative of 

every equivalence class, because IN(77)1 = 1 for any unit 71 E K. Such a representative 

will be chosen in the way suggested by the following lemma. 

LEMMA 1. Let col ... , co n be an integral basis for K. In every equivalence 
class D there is at least one element XD = al W1 + ? * * + anwn (ai C Q) such that 
the sum S(XD) of the absolute values of the coefficients ai is as small as possible. Thus 

S(XD) = laj I < ElZbi I = S(x) 

for every x = b + * ?* + bnn E D. 
Proof Let x E D. Then there is an integer y E RK and a rational integer m 

such that x = y/m. All the elements equivalent to x are of the form y'/m with y' E 

RK. This proves the assertion. 
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The elements XD satisfying the condition of Lemma 1 are called minimal. 
Let ? = 1 6 be a primitive 16th root of unity. In order to evaluate the trace 

Tr = TrQ(.)/Q and the norm N NQ(?)/Q we need the following lemmas. 
LEMMA 2. Let x = ao + a, + + a7 7 E Q(). Then 

Tr(xx) = 8(ao + a7) and N(x) < (ao ? ? + a 7 

Proof. Let a denote any automorphism of Q(?)/Q. Then we have 

Tr(xx) = (xx) = 8(a2 + *+ a2 
(or 

Hence 
/1 ~~~8 

(N(x))2 = (Xx) 6 (8 Z(xi)) = (ag2 + + a2)8. 

LEMMA 3. Let c1, .. ., Cn be positive constants of which cl is the least one. 

Let u1, . n. , un be real numbers such that 

(2) u A 
i 

where A > 0 is fixed. Then 

fJ(ci + uj) < 2-nr(c, + (C3 + 4(c1 + C)C)l/2), 
i i 

where 

C = A (E(ci/ci)2> 

Proof. The set T of points (u, . . . , un) e Rn satisfying (2) is compact. 

Furthermore the function f: T - R, f(u , . . . , un) = H (ci + ui), is continuous so 

that there is a point (vl, . .. ., Vn) e T such that f(ul, . .. ., un) - f(vf , . . ., vn) 

for every (ul, . .. ., un) C T. Clearly, the vi are nonnegative and 

(3) E =A 

First, we shall prove that all of the quantities (ci + vj)vj are equal. Suppose, 

on the contrary, (ci + v1)vi > (ci + v1)vi for some i and j. Hence vi > 0. Let 6 > 0 

be an arbitrary small real number. We can define 

6' = 6 (5) = Vi -(i- 25v _ 62)1/2 = V-F1v + 0 (62) 

if 6 is small enough. Then 8 and 6' satisfy 

(Vi-6')2 (vj + 5)2 _v3 + vJ. 

On the other hand, 

(ci + Vi 
- 

6')(cj + Vj + ) 

= (C i + V)(ci + vi) + 6vT 1 
[(ci + v )v1-(c, ? v1)v1] + 0(62) 

> (ci + Vd)(Cj + Vj) 
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if 6 > 0 is small enough. Hence we have a contradiction. 

On account of the equalities 

(4) (ci + vi)vi = (c? +vl)v1 (i = 1, . . ., n) 

we have 

c ub + v2 _3 v2 cl i=1 , 

(5) dy1= ->- *0v1 (il..n) 

since cl < ci implies v1 > vi. Finally, in view of (3), (5) and (4) we have 

v1 A(E(Cl/Ci)2)-/2 =C 

and 

Vi lh(-ci + (cd + 4(c1 + C)C)12). 

This proves the lemma. 

3. The Outline of the Computations. Let 1 = t16 denote a primitive 16th root 

of unity. We consider the integral basis 1, , . . , t7 for the field Q(?). According to 

Section 2, we have to verify (1) for one minimal element in every equivalence class. 

Let XD = ao + a, + ? * * + a7 7 be a minimal element. We clearly have 

- Ih <_ a, <_ Ih (i = 0, .. * * 7). 

On multiplying XD by an appropriate power of ? we can suppose that 

(6) ao = max lail. 

According to Lemma 2, we have without restrictions ao > \/i/4, since otherwise 

N(XD) < 1. 
Consider all the conjugates of XD and the coefficients of ?, ?2 and ?4 in the con- 

jugates with respect to the basis 1, 7, . . ., 7. These coefficients can be given in eight 

triplets 

(7) (a1, a2, a4), (-a,, -a2, a4), (-a,, a2, a4), (a5, -a2, a4) 

and 

(8) (-a3, a6, -a4), (a7, - a6, -a4), (a3, a6, -a4), (-a7, -a6, -a4) 

which are classified according to the coefficient of ?4. Consider those of the triplets 

(7) and (8) with nonnegative coefficients of ?4. Among these there is at least one 

with nonnegative coefficients of ? and t2. Hence on applying a suitable automorphism 

of Q(?)/Q we may assume that a,, a2, a4 > 0. 

Hence in every equivalence class D there is at least one minimal element XD = 

ao + al + - + a7 7 such that 

(9) Ih > ao = max Iai I > . /4, 

(10) a,, a2, a4 >1 O. 
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It can be proved that for such a minimal element XD one of the numbers 

(11) y=0, 1,i, 1 +i 

satisfies N(XD - y) < 1. 

We have good reason to restrict our attention to only these four numbers y, if 
we consider the location of the conjugates of XD in the complex plane. Let, namely, 
X* = ao ? a4 4 with \/2/4 S a0 S ?h, 0 ? a4 < ao. Then any conjugate u(x*) of 
X* lies in the square bounded by the corresponding conjugates u(y) of the numbers 
(11). Thus, we can suppose that XD is partly eliminated by one of the numbers y so 
that N(XD - ) < 1. 

We have verified this assertion by a computer. The idea of the process is as 
follows. 

We divide the proof into cases according to which of the intervals 

[-0.5, -0.4], [-0.4, -0.3], . . . , [0.4, 0.5] 

the coefficients a. belong. On taking into account the restrictions (9) and (10), there 
are 1512144 cases to be considered. Every case corresponds with a cube I in R8 with 
edge 0.1. Such a cube will be divided into 28 smaller ones by bisecting all the edges if 
needed. The procedure of bisection will be repeated sufficiently many times. 

In the following we say that x is in I if (ao, . . . , a7) E I. 
Every cube will be considered by three steps in the following way. 
Step A. We estimate the norm function by means of Lemma 2. If N(x) < 1 

for every x in I, then this case is finished. Otherwise we must proceed to 
Step B. We shall estimate N(x -y) for x in I and for y = 0, 1, i, 1 + i in the 

following way. 
Let x0 be the center of I. If a denotes any automorphism of Q(?)/Q, then 

N(x - y) = HIu(x - y)I ? H(I (xo - y)I + I (x - xo)I), 

where 

ZIu(x -x0)12 = Tr((x -x0)(x -x0)) _ 8 - 8 0 0.052 = 0.16 

according to Lemma 2. The numbers lu(xo -y)l are positive constants so that we 
can apply Lemma 3. Hence we have an upper bound for N(x -y). If for any one of 
the numbers y = 0, 1, i, 1 + i we have N(x - y) < 1 for every x in I, then the case 
is finished. Otherwise we must proceed to 

Step C. It may be so that in the cube I there does not exist any minimal ele- 
ment. The existence of such an element is tested as follows. 

Suppose there is a minimal element XD = a0 + a,+ ? + a7 7 in I, i.e. 
(a, . .. , a7) E I. Hence the inequality 

(12) S(XD) < S(flXD + Z) 

is satisfied for any z C Z [f] and for any one of the following four units 
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(13) 71=1+ + t2 + t3 + t6, 1 - t2 + t,1' 
- 6 + t7. 

If in I there is no point (aO, . . ., a7) satisfying the inequalities (12) we have a con- 

tradiction. 
For instance, consider the case 

(aO, ...,a7) E [0.4, 0.5] x [0.4, 0.5] x [0.3, 0.4] x [0.2, 0.3] 

x [0.4, 0.5] x [-0.4, -0.3] x [0.3, 0.4] x [0, 0.1] . 

Hence 

S((1 + ? + 2)(aO + a +- + a7 7) + z) -S(aO + al? +- - - + a7 7) 

=S((aO -a7 -ad) + (a, + ao -a7)t + (a2 + a, + ao) ?2 +***+ (a7 + a6 + aS )7 + z) 

-S(aO + al 1 + * - * + a7 ?7) 

S0.2 + (1 -al -aO +a7) + (- 1 +a2 +a, +ao) + 0.2 4 0.2 + (a, +a4 +a3) 

+(a6 +a, +a4)+0.2-(aO +a, +a2 +a3 +a4-as +a6 +a7) 

=-aO -al + a4 + 3a + 0.8 S-0.4 -0.4 + 0.5 -0.9 + 0.8 <0 

for z = _- - t2. Thus the cube in question cannot contain any minimal element. 

It is worth noticing that the missing four conjugates 1 - ? + t2, 1 - t3 + t6, 

1 - t2 - t5, 1 - t6 - t7 of 1 + ? + t2 are the units (13) multiplied by suitable roots 

of unity. Hence in (12) it is of no use to consider all of the conjugates of 1 + ? + 2 

If the unit 71 is a sum of more than three roots of unity, then the estimation of (12) is 

not so accurate. 
If in I there possibly exists a minimal element, then I is divided into 28 cubes 

as described above. The inequalities (12) may, however, imply some restrictions con- 

cerning the coefficients ai. 
For instance, consider the case 

(aO,... ,a7) e [0.3, 0.4] x [0.3, 0.4] x [0.3, 0.4] x [0.1, 0.2] 

x [0.2, 0.3] x [-0.4, -0.3] x [0.2, 0.3] x [0.3, 0.4]. 

Then 

S((1 + + 2) (aO + a, + + a7 7) + z) - S(aO + al?+ - - - + a7 7) 

S (- o+ a7 +ad +(a, +ao -a7) +0.2 +(I -a3 -a2- a,) 

(14) + (1 -a4 -a3 -a2) + 0.2 + (a6 + a, + a4) + (a7 + a6 + a,) 

- (aO + al + a2 + a3 + a4 - a, + a6 + a7) 

- aO -a, -3a2 -3a3 -a4 + 3a5 + 2a6 + 2.4 S0.1 

if z = -_3 - t4. Thus there may be a minimal element in the cube. But if a2 > 0.35 

or a3 > 0.15 or a, <-0.35 or a6 < 0.25 then the difference (14) is negative. Hence 

we may restrict our attention to the subcubes with 

a2 S 0.35, a3 S 0.15, a, > -0.35, a6 > 0.25. 
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so we have 16 subcubes left. But six of these are impossible because of (6). Hence 
there are only 10 cases to be considered. 

Finally the Steps B and C are applied to the smaller cubes. The process of bi- 
section must be repeated five times in some cases before the assertion is verified. 

The numerical calculations were carried out on a UNIVAC 1108 system. The 
computing time was about an hour. 

The following table indicates how many times the Steps A, B and C were applied 
during the calculations. 

Edge of cube Step A Step B Step C 

0.1 1512144 671376 55136 
0.1 * 2-1 882915 8705 
0.1 2-2 114203 2796 
0.1 2-3 54432 1033 
0.1 * 2-4 15986 244 
0.1 * 2-5 2322 8 

The computations were tested in several cubes I by outputting the upper bounds 
of N(x - y) and S(7rx + z) - S(x) for x E I and for suitable fixed numbers y, 71 and z. 
The values were found to be correct. If the cube I had to be divided into subcubes, 
then we checked that every subcube either was found to be impossible or was con- 
sidered by Steps B and C, and so on. 
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