Euclid's Algorithm in the Cyclotomic Field $\mathbf{Q}\left(\xi_{16}\right)$

By T. Ojala

Abstract

Let ζ_{16} denote a primitive 16 th root of unity. It is proved that $\mathrm{Z}\left[\zeta_{16}\right]$ is Euclidean for the norm map.

1. Introduction. Let K be an algebraic number field of degree n over \mathbf{Q} and R_{K} the ring of integers of K. Let $N: K \rightarrow \mathbf{Q}$ be the norm function $N(x)=\Pi_{\sigma} \sigma(x)$, the product ranging over all n embeddings of K into the complex field. We call R_{K} Euclidean for the norm if for every $a, b \in R_{K}, b \neq 0$, there are $q, r \in R_{K}$ such that $a=q b+r$ and $|N(r)|<|N(b)|$. In view of the multiplicativity of the norm we may write this as

$$
\begin{equation*}
(\forall x \in K)\left(\exists y \in R_{K}\right)(|N(x-y)|<1) . \tag{1}
\end{equation*}
$$

For a positive integer m, let ζ_{m} denote a primitive m th root of unity. By ϕ we mean the Euler ϕ-function. It is known that if $\phi(m) \leqslant 10, m \neq 16$, then $\mathrm{Z}\left[\zeta_{m}\right]$ is Euclidean for the norm map. For more details see, e.g. Lenstra [1] and Masley [2]. The case $m=24$ has recently been proved by H. W. Lenstra, Jr. (written communication).

We shall now prove that $\mathrm{Z}\left[\zeta_{16}\right]$ is Euclidean, too.
2. Preliminaries. Let x_{1} and x_{2} be elements in an algebraic number field K. We shall say that x_{1} and x_{2} are equivalent if there is a unit $\eta \in K$, an integer $z \in K$ and an automorphism σ of K such that

$$
x_{1}=\eta \sigma\left(x_{2}\right)+z
$$

This definition really gives rise to an equivalence relation.
In order to verify condition (1), it is enough to consider one representative of every equivalence class, because $|N(\eta)|=1$ for any unit $\eta \in K$. Such a representative will be chosen in the way suggested by the following lemma.

Lemma 1. Let $\omega_{1}, \ldots, \omega_{n}$ be an integral basis for K. In every equivalence class D there is at least one element $x_{D}=a_{1} \omega_{1}+\cdots+a_{n} \omega_{n}\left(a_{i} \in \mathbf{Q}\right)$ such that the sum $S\left(x_{D}\right)$ of the absolute values of the coefficients a_{i} is as small as possible. Thus

$$
S\left(x_{D}\right)=\sum\left|a_{i}\right| \leqslant \sum\left|b_{i}\right|=S(x)
$$

for every $x=b_{1} \omega_{1}+\cdots+b_{n} \omega_{n} \in D$.
Proof. Let $x \in D$. Then there is an integer $y \in R_{K}$ and a rational integer m such that $x=y / m$. All the elements equivalent to x are of the form y^{\prime} / m with $y^{\prime} \in$ R_{K}. This proves the assertion.

The elements x_{D} satisfying the condition of Lemma 1 are called minimal.
Let $\zeta=\zeta_{16}$ be a primitive 16 th root of unity. In order to evaluate the trace $\operatorname{Tr}=\operatorname{Tr}_{\mathbf{Q}(\xi) / \mathbf{Q}}$ and the norm $N=N_{\mathbf{Q}(\zeta) / \mathbf{Q}}$ we need the following lemmas.

Lemma 2. Let $\boldsymbol{x}=a_{0}+a_{1} \zeta+\cdots+a_{7} \xi^{7} \in \mathbf{Q}(\zeta)$. Then

$$
\operatorname{Tr}(x \bar{x})=8\left(a_{0}^{2}+\cdots+a_{7}^{2}\right) \quad \text { and } \quad N(x) \leqslant\left(a_{0}^{2}+\cdots+a_{7}^{2}\right)^{4} .
$$

Proof. Let σ denote any automorphism of $\mathbf{Q}(\zeta) / \mathbf{Q}$. Then we have

$$
\operatorname{Tr}(x \bar{x})=\sum_{\sigma} \sigma(x \bar{x})=8\left(a_{0}^{2}+\cdots+a_{7}^{2}\right)
$$

Hence

$$
(N(x))^{2}=\prod_{\sigma} \sigma(x \bar{x}) \leqslant\left(\frac{1}{8} \sum_{\sigma} \sigma(x \bar{x})\right)^{8}=\left(a_{0}^{2}+\cdots+a_{7}^{2}\right)^{8} .
$$

Lemma 3. Let c_{1}, \ldots, c_{n} be positive constants of which c_{1} is the least one. Let u_{1}, \ldots, u_{n} be real numbers such that

$$
\begin{equation*}
\sum_{i} u_{i}^{2} \leqslant A^{2}, \tag{2}
\end{equation*}
$$

where $A \geqslant 0$ is fixed. Then

$$
\prod_{i}\left(c_{i}+u_{i}\right) \leqslant 2^{-n} \prod_{i}\left(c_{i}+\left(c_{i}^{2}+4\left(c_{1}+C\right) C\right)^{1 / 2}\right)
$$

where

$$
C=A\left(\sum_{i}\left(c_{1} / c_{i}\right)^{2}\right)^{-1 / 2}
$$

Proof. The set T of points $\left(u_{1}, \ldots, u_{n}\right) \in \mathbf{R}^{n}$ satisfying (2) is compact. Furthermore the function $f: T \rightarrow \mathbf{R}, f\left(u_{1}, \ldots, u_{n}\right)=\Pi\left(c_{i}+u_{i}\right)$, is continuous so that there is a point $\left(v_{1}, \ldots, v_{n}\right) \in T$ such that $f\left(u_{1}, \ldots, u_{n}\right) \leqslant f\left(v_{1}, \ldots, v_{n}\right)$ for every $\left(u_{1}, \ldots, u_{n}\right) \in T$. Clearly, the v_{i} are nonnegative and

$$
\begin{equation*}
\sum_{i} v_{i}^{2}=A^{2} \tag{3}
\end{equation*}
$$

First, we shall prove that all of the quantities $\left(c_{i}+v_{i}\right) v_{i}$ are equal. Suppose, on the contrary, $\left(c_{i}+v_{i}\right) v_{i}>\left(c_{j}+v_{j}\right) v_{j}$ for some i and j. Hence $v_{i}>0$. Let $\delta>0$ be an arbitrary small real number. We can define

$$
\delta^{\prime}=\delta^{\prime}(\delta)=v_{i}-\left(v_{i}^{2}-2 \delta v_{j}-\delta^{2}\right)^{1 / 2}=\delta v_{i}^{-1} v_{j}+O\left(\delta^{2}\right)
$$

if δ is small enough. Then δ and δ^{\prime} satisfy

$$
\left(v_{i}-\delta^{\prime}\right)^{2}+\left(v_{j}+\delta\right)^{2}=v_{i}^{2}+v_{j}^{2}
$$

On the other hand,

$$
\begin{aligned}
\left(c_{i}+v_{i}-\delta^{\prime}\right. &)\left(c_{j}+v_{j}+\delta\right) \\
& =\left(c_{i}+v_{i}\right)\left(c_{j}+v_{j}\right)+\delta v_{i}^{-1}\left[\left(c_{i}+v_{i}\right) v_{i}-\left(c_{j}+v_{j}\right) v_{j}\right]+O\left(\delta^{2}\right) \\
& >\left(c_{i}+v_{i}\right)\left(c_{j}+v_{j}\right)
\end{aligned}
$$

if $\delta>0$ is small enough. Hence we have a contradiction.
On account of the equalities

$$
\begin{equation*}
\left(c_{i}+v_{i}\right) v_{i}=\left(c_{1}+v_{1}\right) v_{1} \quad(i=1, \ldots, n) \tag{4}
\end{equation*}
$$

we have

$$
\begin{equation*}
v_{i}=\frac{c_{1} v_{1}+v_{1}^{2}-v_{i}^{2}}{c_{i}} \geqslant \frac{c_{1}}{c_{i}} \cdot v_{1} \quad(i=1, \ldots, n) \tag{5}
\end{equation*}
$$

since $c_{1} \leqslant c_{i}$ implies $v_{1} \geqslant v_{i}$. Finally, in view of (3), (5) and (4) we have

$$
v_{1} \leqslant A\left(\sum\left(c_{1} / c_{i}\right)^{2}\right)^{-1 / 2}=C
$$

and

$$
v_{i} \leqslant 1 / 2\left(-c_{i}+\left(c_{i}^{2}+4\left(c_{1}+C\right) C\right)^{1 / 2}\right) .
$$

This proves the lemma.
3. The Outline of the Computations. Let $\zeta=\zeta_{16}$ denote a primitive 16 th root of unity. We consider the integral basis $1, \zeta, \ldots, \zeta^{7}$ for the field $\mathbf{Q}(\zeta)$. According to Section 2 , we have to verify (1) for one minimal element in every equivalence class.

Let $x_{D}=a_{0}+a_{1} \zeta+\cdots+a_{7} \zeta^{7}$ be a minimal element. We clearly have

$$
-1 / 2 \leqslant a_{i} \leqslant 1 / 2 \quad(i=0, \ldots, 7) .
$$

On multiplying x_{D} by an appropriate power of ζ we can suppose that

$$
\begin{equation*}
a_{0}=\max \left|a_{i}\right| . \tag{6}
\end{equation*}
$$

According to Lemma 2 , we have without restrictions $a_{0} \geqslant \sqrt{2} / 4$, since otherwise $N\left(x_{D}\right)<1$.

Consider all the conjugates of x_{D} and the coefficients of ζ, ζ^{2} and ζ^{4} in the conjugates with respect to the basis $1, \zeta, \ldots, \zeta^{7}$. These coefficients can be given in eight triplets

$$
\begin{equation*}
\left(a_{1}, a_{2}, a_{4}\right),\left(-a_{5},-a_{2}, a_{4}\right),\left(-a_{1}, a_{2}, a_{4}\right),\left(a_{5},-a_{2}, a_{4}\right) \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(-a_{3}, a_{6},-a_{4}\right),\left(a_{7},-a_{6},-a_{4}\right),\left(a_{3}, a_{6},-a_{4}\right),\left(-a_{7},-a_{6},-a_{4}\right) \tag{8}
\end{equation*}
$$

which are classified according to the coefficient of ζ^{4}. Consider those of the triplets (7) and (8) with nonnegative coefficients of ζ^{4}. Among these there is at least one with nonnegative coefficients of ζ and ζ^{2}. Hence on applying a suitable automorphism of $\mathbf{Q}(\zeta) / \mathbf{Q}$ we may assume that $a_{1}, a_{2}, a_{4} \geqslant 0$.

Hence in every equivalence class D there is at least one minimal element $x_{D}=$ $a_{0}+a_{1} \zeta+\cdots+a_{7} \zeta^{7}$ such that

$$
\begin{gather*}
1 / 2 \geqslant a_{0}=\max \left|a_{i}\right| \geqslant \sqrt{2} / 4, \tag{9}\\
a_{1}, a_{2}, a_{4} \geqslant 0 . \tag{10}
\end{gather*}
$$

It can be proved that for such a minimal element x_{D} one of the numbers

$$
\begin{equation*}
y=0,1, i, 1+i \tag{11}
\end{equation*}
$$

satisfies $N\left(x_{D}-y\right)<1$.
We have good reason to restrict our attention to only these four numbers y, if we consider the location of the conjugates of x_{D} in the complex plane. Let, namely, $x_{D}^{*}=a_{0}+a_{4} \zeta^{4}$ with $\sqrt{2} / 4 \leqslant a_{0} \leqslant 1 / 2,0 \leqslant a_{4} \leqslant a_{0}$. Then any conjugate $\sigma\left(x_{D}^{*}\right)$ of x_{D}^{*} lies in the square bounded by the corresponding conjugates $\sigma(y)$ of the numbers (11). Thus, we can suppose that x_{D} is partly eliminated by one of the numbers y so that $N\left(x_{D}-y\right)<1$.

We have verified this assertion by a computer. The idea of the process is as follows.

We divide the proof into cases according to which of the intervals

$$
[-0.5,-0.4],[-0.4,-0.3], \ldots,[0.4,0.5]
$$

the coefficients a_{i} belong. On taking into account the restrictions (9) and (10), there are 1512144 cases to be considered. Every case corresponds with a cube I in \mathbf{R}^{8} with edge 0.1. Such a cube will be divided into 2^{8} smaller ones by bisecting all the edges if needed. The procedure of bisection will be repeated sufficiently many times.

In the following we say that x is in I if $\left(a_{0}, \ldots, a_{7}\right) \in I$.
Every cube will be considered by three steps in the following way.
Step A. We estimate the norm function by means of Lemma 2. If $N(x)<1$ for every x in I, then this case is finished. Otherwise we must proceed to

Step B. We shall estimate $N(x-y)$ for x in I and for $y=0,1, i, 1+i$ in the following way.

Let x_{0} be the center of I. If σ denotes any automorphism of $\mathbf{Q}(\zeta) / \mathbf{Q}$, then

$$
N(x-y)=\prod_{\sigma}|\sigma(x-y)| \leqslant \prod_{\sigma}\left(\left|\sigma\left(x_{0}-y\right)\right|+\left|\sigma\left(x-x_{0}\right)\right|\right)
$$

where

$$
\sum_{\sigma}\left|\sigma\left(x-x_{0}\right)\right|^{2}=\operatorname{Tr}\left(\left(x-x_{0}\right)\left(\overline{x-x_{0}}\right)\right) \leqslant 8 \cdot 8 \cdot 0.05^{2}=0.16
$$

according to Lemma 2. The numbers $\left|\sigma\left(x_{0}-y\right)\right|$ are positive constants so that we can apply Lemma 3. Hence we have an upper bound for $N(x-y)$. If for any one of the numbers $y=0,1, i, 1+i$ we have $N(x-y)<1$ for every x in I, then the case is finished. Otherwise we must proceed to

Step C. It may be so that in the cube I there does not exist any minimal element. The existence of such an element is tested as follows.

Suppose there is a minimal element $x_{D}=a_{0}+a_{1} \zeta+\cdots+a_{7} \zeta^{7}$ in I, i.e. $\left(a_{0}, \ldots, a_{7}\right) \in I$. Hence the inequality

$$
\begin{equation*}
S\left(x_{D}\right) \leqslant S\left(\eta x_{D}+z\right) \tag{12}
\end{equation*}
$$

is satisfied for any $z \in \mathbf{Z}[\zeta]$ and for any one of the following four units

$$
\begin{equation*}
\eta=1+\zeta+\zeta^{2}, \quad 1+\zeta^{3}+\zeta^{6}, \quad 1-\zeta^{2}+\zeta^{5}, \quad 1-\zeta^{6}+\zeta^{7} \tag{13}
\end{equation*}
$$

If in I there is no point $\left(a_{0}, \ldots, a_{7}\right)$ satisfying the inequalities (12) we have a contradiction.

For instance, consider the case

$$
\begin{aligned}
\left(a_{0}, \ldots, a_{7}\right) \in & {[0.4,0.5] \times[0.4,0.5] \times[0.3,0.4] \times[0.2,0.3] } \\
& \times[0.4,0.5] \times[-0.4,-0.3] \times[0.3,0.4] \times[0,0.1]
\end{aligned}
$$

Hence

$$
\begin{aligned}
& S\left(\left(1+\zeta+\zeta^{2}\right)\left(a_{0}+a_{1} \zeta+\cdots+a_{7} \zeta^{7}\right)+z\right)-S\left(a_{0}+a_{1} \zeta+\cdots+a_{7} \zeta^{7}\right) \\
& = \\
& \quad S\left(\left(a_{0}-a_{7}-a_{6}\right)+\left(a_{1}+a_{0}-a_{7}\right) \zeta+\left(a_{2}+a_{1}+a_{0}\right) \zeta^{2}+\cdots+\left(a_{7}+a_{6}+a_{5}\right) \zeta^{7}+z\right) \\
& \quad-S\left(a_{0}+a_{1} \zeta+\cdots+a_{7} \zeta^{7}\right) \\
& \leqslant
\end{aligned}
$$

for $z=-\zeta-\zeta^{2}$. Thus the cube in question cannot contain any minimal element.
It is worth noticing that the missing four conjugates $1-\zeta+\zeta^{2}, 1-\zeta^{3}+\zeta^{6}$, $1-\zeta^{2}-\zeta^{5}, 1-\zeta^{6}-\zeta^{7}$ of $1+\zeta+\zeta^{2}$ are the units (13) multiplied by suitable roots of unity. Hence in (12) it is of no use to consider all of the conjugates of $1+\zeta+\zeta^{2}$. If the unit η is a sum of more than three roots of unity, then the estimation of (12) is not so accurate.

If in I there possibly exists a minimal element, then I is divided into 2^{8} cubes as described above. The inequalities (12) may, however, imply some restrictions concerning the coefficients a_{i}.

For instance, consider the case

$$
\begin{aligned}
\left(a_{0}, \ldots, a_{7}\right) \in & {[0.3,0.4] \times[0.3,0.4] \times[0.3,0.4] \times[0.1,0.2] } \\
& \times[0.2,0.3] \times[-0.4,-0.3] \times[0.2,0.3] \times[0.3,0.4]
\end{aligned}
$$

Then

$$
\begin{align*}
& S\left(\left(1+\zeta+\zeta^{2}\right)\left(a_{0}+a_{1} \zeta+\cdots+a_{7} \zeta^{7}\right)+z\right)-S\left(a_{0}+a_{1} \zeta+\cdots+a_{7} \zeta^{7}\right) \\
& \leqslant \\
& \quad\left(-a_{0}+a_{7}+a_{6}\right)+\left(a_{1}+a_{0}-a_{7}\right)+0.2+\left(1-a_{3}-a_{2}-a_{1}\right) \tag{14}\\
& \quad+\left(1-a_{4}-a_{3}-a_{2}\right)+0.2+\left(a_{6}+a_{5}+a_{4}\right)+\left(a_{7}+a_{6}+a_{5}\right) \\
& \quad-\left(a_{0}+a_{1}+a_{2}+a_{3}+a_{4}-a_{5}+a_{6}+a_{7}\right) \\
& =-a_{0}-a_{1}-3 a_{2}-3 a_{3}-a_{4}+3 a_{5}+2 a_{6}+2.4 \leqslant 0.1
\end{align*}
$$

if $z=-\zeta^{3}-\zeta^{4}$. Thus there may be a minimal element in the cube. But if $a_{2}>0.35$ or $a_{3}>0.15$ or $a_{5}<-0.35$ or $a_{6}<0.25$ then the difference (14) is negative. Hence we may restrict our attention to the subcubes with

$$
a_{2} \leqslant 0.35, \quad a_{3} \leqslant 0.15, \quad a_{5} \geqslant-0.35, \quad a_{6} \geqslant 0.25
$$

so we have 16 subcubes left. But six of these are impossible because of (6). Hence there are only 10 cases to be considered.

Finally the Steps B and C are applied to the smaller cubes. The process of bisection must be repeated five times in some cases before the assertion is verified.

The numerical calculations were carried out on a UNIVAC 1108 system. The computing time was about an hour.

The following table indicates how many times the Steps A, B and C were applied during the calculations.

Edge of cube	Step A	Step B	Step C
0.1	1512144	671376	
$0.1 \cdot 2^{-1}$		882915	55136
$0.1 \cdot 2^{-2}$	114203	8705	
$0.1 \cdot 2^{-3}$	54432	2796	
$0.1 \cdot 2^{-4}$	15986	1033	
$0.1 \cdot 2^{-5}$		2322	244
			8

The computations were tested in several cubes I by outputting the upper bounds of $N(x-y)$ and $S(\eta x+z)-S(x)$ for $x \in I$ and for suitable fixed numbers y, η and z. The values were found to be correct. If the cube I had to be divided into subcubes, then we checked that every subcube either was found to be impossible or was considered by Steps B and C, and so on.

Acknowledgment. I would like to express my gratitude to Professor Veikko Ennola for many ideas concerning this problem and for reading the computer program.

```
Department of Mathematical Sciences
University of Turku
SF-20500 Turku 50, Finland
```

1. H. W. LENSTRA, JR., "Euclid's algorithm in cyclotomic fields," J. London Math. Soc. (2), v. 10, 1975, pp. 457-465.
2. J. M. MASLEY, "On cyclotomic fields Euclidean for the norm map," Notices Amer. Math. Soc., v. 19, 1972, A-813. Abstract \# 700-A3.
